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Abstract. N-Body simulation algorithms are amongst the most commonly used within the field of scientific 

computing. Especially in computational astrophysics, they are used to simulate gravitational scenarios for solar 

systems or galactic collisions. Parallel versions of such N-Body algorithms have been extensively designed and 

optimized for multicore and distributed computing schemes. However, N-Body algorithms are still a novelty 

in the field of GP-GPU computing. Although several N-body algorithms have been proved to harness the 

potential of a modern GPU processor, there are additional complexities that this architecture presents that could 

be analyzed for possible optimizations. In this article, we introduce the problem of host to device (GPU) – and 

vice versa – data transferring overhead and analyze a way to estimate its impact in the performance of 

simulations. 
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1   Introduction 

The N-body problem is largely known within the physics, engineering, and mathematical research faculty. 

It is commonly used to calculate – as precisely as possible – the future position, velocity, momentum, 

charge, potential, or any other aspect of a massive/charged body in regard to other bodies that interact with 

it within a time interval. Although some efforts have been made [1], many theorists have unsuccessfully 

tried for centuries to find a purely mathematical solution that could resolve any application of this problem 

in a series of steps linearly related to the amount (n) of bodies. Therefore, currently, the only way to 

approximate to a real solution is to use a differential method with tiny time slices (differentials) using the 

power of modern computers. However, this approach presents some downsides. 

First, the usage of finite (as opposed to infinitesimal) time differentials is detrimental to the precision of the 

result. All positions and momentums are taken from the starting moment of the differential and are kept as 

constants during the calculation. Since the simulated forces remain constant during such differential, the 

results obtained suffer from a subtle degradation after each iteration. In consequence, the larger time 

differential is used, the more error is produced [2].  

   On the other hand, if we use smaller time differentials for the simulation, more iterations will have to be 

calculated until the end time is reached. As a result, simulations will require more computing time. 

    It is therefore important to keep in mind that the length of the selected time differential ultimately defines 

the precision admissible for the result expected, and the time that a computer will take to complete the 

simulation. Using high-precision libraries to augment the precision will also redound in increased 

computing time [3]. 

  A way to calculate the amount iterations (n) to be simulated is to evaluate the inverse relation between the 

entire simulation time interval (∆𝑡), and the time differential (𝜕𝑡) as shown in Eq. (1). 

 

 

𝑛 =  
∆𝑡

𝜕𝑡
 

 

(1) 

  

     Yet another reason why time differential is an important factor to be taken into account is that it defines 

the amount of data being transferred between the host memory – traditionally known as RAM – and the 

device – graphics processing unit – through the PCI-Express bus. The time taken for the simulation will 



increase if more resources/time should be spent on unnecessary data transmission rather than just processing 

[4].  

    In traditional CPU-based schemes, this kind of data transference overhead is negligible since all data is 

present and up-to-date within the host memory after each iteration is calculated. In those cases, it is possible 

to use/access to all the positions of all n bodies and use them in real-time – for instance, for saving them 

into an output file, or rendering them into the screen. However, when GPU devices are used for these 

algorithms it is required to define explicit data transferences from the results obtained within the device 

memory back to the host in order to enable them for any use. Such overhead is detrimental to the overall 

performance and any efforts made to reduce it can yield significant optimizations [5]. Estimating such 

overhead is the object of our analysis in this article.  

  

2   CUDA Implementation of N-BODY 

The CUDA programming model as an extension of the C language provides an excellent scheme to 

parallelize scalable N-Body algorithms for GP-GPU architectures [6]. In this model, in opposition to the 

conventional multicore CPU model, the programmer is encouraged to create as many threads as needed 

depending on the amount of data elements in the problem. By doing this, it is possible, in the generality of 

cases, to yield the maximum performance from the many simple yet extremely parallelizable GPU cores. 

Of course, existing algorithms similar to the one used in this article are not exceptions [7] [8]. 

In the particular implementation of our N-body algorithm for CUDA, we created one thread per body in 

the simulation that will be in charge to execute the same function – called CUDA kernel – within the GPU 

processor. This kernel is programmed to execute the following steps: 

Load a single body’s initial values from the device global memory. Each thread will load a different body 

based on its thread ID. 

For each other body in the simulation: 

Load the body’s values from the device global or shared memory. 

Calculate the force that all other bodies impose to the loaded body. 

Save the new values for acceleration in the body data back into the device global memory. 

Although threads perform better when no synchronization or communication functions are executed within 

the kernel, the CUDA architecture allows the programmer to specify blocks where a certain number of 

threads – depending on the infrastructure capability – can work coordinately. Based on this possibility, 

several memory access optimizations can be done in order to reduce the memory latency overhead.  
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Fig.1: Shared Memory utilization for the N-Body CUDA kernel 

 

 The most successful optimization that we implemented was the usage of intra-block shared memory. 

Since constantly accessing global memory (low latency) forces executing threads to stall until data is 

effectively loaded, the overall performance is greatly reduced. For that reason, this architecture provides 

the programmer with intermediate memory banks – such as shared and register memory – which reside 

within the processor and could be used to reduce the amount of accesses to global memory.  

Fig.1 shows an example of such optimization where threads are grouped into one-dimensional blocks of 

size two1. In the same fashion, bodies’ data present in global memory were divided in data blocks that are 

loaded, one by one, into the block shared memory. By doing this, all threads read data from the global 

                                                
1 This size was arbitrarily defined for simplicity reasons in this article while, in fact, blocks of 512 
threads were actually used in our experiments. 



memory only once and access it several times within the shared memory, thus reducing the total memory 

latency overhead. 

 The pseudo-code shown next represents the N-body kernel to be executed by every thread using the 

CUDA terminology: 

 
Where: 

 

thread_body is the private memory for the body data pertaining to each thread.  

vec is the collection of bodies’ data stored in the global memory of the device.   

Shared_data is a vector of size BSIZE where a complete block of data is stored and used as shared memory 

by a particular block of threads. 

TID is the thread identifier within the block. 

BID is the block identifier. 

BSIZE is the size of each block. 

BCOUNT is the amount of blocks created.  

 

A variety of other optimizations has been applied to the algorithm used in our experiments. Some of them 

have been already described in our previous work regarding the usage of multi-core clusters described in 

[9] and [10], and were used as the base for the CUDA version of our algorithm. However, more GPU-

specific optimizations such as memory coalescing, shared memory usage, loop unrolling, interleaved 

thread-body processing were applied. Most of these optimizations are defined as good practices for any 

CUDA algorithm [11] [12]. Consequently, we assume for our experiments that the algorithm cannot be 

optimized any further.  

3 Memory Transference Overhead 

There are many types of research that requires scientists to run N-Body simulations in physics or 

engineering topics. In some, only the final result – for example, final position of the bodies involved – is 

needed; in others, it is more important to know the path that those bodies took during the simulation. 

Depending on each case – or a combination thereof –, scientists could choose to have the intermediate 

results stored in a device, transmitted through a network or displayed on a screen. In other cases, they would 

discard part or the entire journey in order to reduce memory transference overhead. 

 As mentioned for CPU based algorithms, all information is present in the host memory to be used at 

all times. Even if it is not used, stored, or sent through a network during the simulation, no extra time is 

required for memory transmission. However, in the case of GP-GPU algorithms, copying the data back to 

the host is necessary if some action is to be performed with them. 

 It is important to mention that, even if no intermediate data is needed for the simulation purposes, it is 

still necessary to guarantee results with acceptable precision by calculating the necessary amount of 

iterations of rather small time differentials until the total simulation time is reached. This forces every 

simulation to be performed with a certain number of iterations, even if only the final result is needed.  

 In this research, we sought to measure the impact of data transmission on the overall performance of 

the algorithms, letting aside other possible overheads introduced by its usage. By measuring this, we were 

be able to determine how much performance can be gained by only obtaining the final results of a N-Body 

simulation, in comparison with transmitting the intermediate results at each iteration. This allowed us to 

define the minimum and maximum performance gain possible regarding data transmission between the host 

void nbodyKernel(vec) 

{ 

thread_body = vec[TID + BID * BSIZE] 

 

For each i in  BCOUNT Do 

   Shared_data[TID] = vec[TID + BSIZE * i] 

   For each j in BSIZE Do 

    Compute(thread_body, i*BSIZE + j) 

     Update acceleration of thread_body 

   End for 

End For 

 

vec[TID + BID*BSIZE] = thread_body 

 } 

 

vec[TID + BID * BSIZE]= thread_body 



(CPU) and device (GPU), having all other possible combinations  (for instance, transmitting one result 

every two iterations) in between those two results.  

We have verified through experimentation that these relations do not vary when the iteration count2 is 

changed. Using a rather high amount of iterations, deviation becomes insignificant. For iterations counts 

close to 1, however, execution interference from the operating system introduces a more noticeable 

deviation.  

 In order to measure how much overhead is introduced by transmitting data at each iteration in relation 

to doing so only at the beginning and the end of the simulation, we ran the same set of tests to compare two 

algorithms. Algorithm Nbody1 transmits – yet it does not use – intermediate results after each iteration, and 

Nbody2 calculates all iterations without interruptions. The architecture used for our tests is shown in Table 

1, and the results obtained are shown in Table 2. 
 

Table 1: GPU Architecture used. 
 

GPU Device GeForce GTX 550Ti 

CUDA Cores 192 

Capability CUDA 2.1 

DRAM 1 GB GDDR5 
 

 

Table 2: GFlop/s obtained for both versions 
 

n Nbody1 Nbody2 

4096 271 307 

8192 315 333 

16384 343 353 

32768 357 362 
 

 

The first detail to notice from the results is that the difference between the GFlop/s obtained from both 

versions – the amount of overhead introduced by data transmission – reduces as n (amount of bodies being 

simulated) increases. This can be explained by the fact that the algorithm complexity is quadratic – becomes 

4 times bigger, when we double the data – while data transmission increases only linearly regarding the 

problem size – transmission time will only double. In other words, as the threads take more time to execute 

the kernel, the overhead of data transmission becomes less significant. This relationship can be seen in the 

results presented in Fig.2. 

 

 
Fig.2: Measured transmission overhead ratio. 

4 Transmission/execution ratio evaluation 

Since we have empirically obtained values of ratio between the transmission overhead size (expressed in 

Flop) for several cases of n, we deemed necessary to look for a relationship that could allow us to evaluate 

this ratio for any given n. Moreover, expressing this relationship in terms of bytes and Flops could allow 

calculating an estimate of transmission overhead for other types of algorithms, and not only for N-body 

problems. The first step in order to obtain such relationship is to find how data transmission requirement 

increases given a discrete increase in one body. We used profiling tools [13] and techniques [14] that obtain 

precise information about memory usage directly from the hardware counters. Fig. 3 shows the host/device 

transference volume for a single iteration with n=4096 elements and Fig.4 shows the host/device 

transference volume for the same N count. 

 

                                                
2We used 65536 simulation iterations in all our experiments. 
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Fig.3: Transmitted data for one simulation 

iteration. 

 
Fig.4: Single-Precision Flop Count for the N-

Body kernel per iteration. 

 

 We need now a way to tell how much data transmission increases when adding another body to the 

simulation. This can be obtained by multiplying the calculated data transmission per iteration by count of 

the iterations being simulated and dividing it by the n used. The resulting expression will determine T(n) – 

total transmission requirements – as a function of n. Eq. 2 shows n for the performed test: 

𝑇(𝑛) =  
917504 𝑏𝑦𝑡𝑒𝑠

4096 
 𝑛 =  224𝑛 𝑏𝑦𝑡𝑒𝑠 (2) 

 

 The second step is to determine the size of the problem – expressed in MFlop – increases, given a 

similar increase in one element. To obtain this value, the same profiling tool allowed us to know how many 

floating operations were performed during the execution of the N-body kernel. As a result we can consider 

F(n) – total amount of Flop – as a function of n, using the obtained single-precision Flop count per 

body/body compute as in eq. 3: 

 

𝐹(𝑛) =  1216 𝑛(𝑛 − 1) 𝐹𝐿𝑂𝑃 (3) 

 

Having T(n) and F(n) as functions of n, it is possible to establish the relationship between the bytes of data 

being transmitted and the amount of Flops for each additional element of an algorithm with quadratic 

complexity. As a result, we can obtain a data overhead ratio (dor) as in eq. 4: 

 

𝑑𝑜𝑟(𝑛) =  
𝑁(𝑛)

𝐹(𝑛)
=  

224 𝑛 𝑏𝑦𝑡𝑒𝑠

1216  𝑛(𝑛 − 1) 𝐹𝐿𝑂𝑃
≅

0,185  

(𝑛 − 1)
[

𝑏𝑦𝑡𝑒

𝐹𝐿𝑂𝑃
] (4) 

 

The data overhead ratio (dor) obtained indicates, for this algorithm, how many bytes will be transmitted 

per floating point operation to be executed, given n elements. The dor value for every integer between 4096 

and 32768 resemble the same inverse relation that our experimental measures shown in Fig. 2. 

 What is most important about this relation is that it is architecture-independent. This means that, no 

matter which GPU device model we use, the execution of this kernel will have the same ratio between data 

transmission and Flop processing. Thus, we only have to link it with the actual cost of transmission of this 

specific architecture to get its fraction of the performance overhead. 

 This proportion can be easily calculated since we know that the optimal performance of the GPU device 

doesn’t vary, and it is only being reduced by the data transmission overhead. Thus, we can assume that the 

increase in the problem size – measured in GFlop – is the r relation for the performance drop observed in 

Table 2. For N = 4096, eq. 5 reflects this increase: 

 

𝑟(4096) =  
307 − 271

307
= 0.117 

 𝐵𝑦𝑡𝑒𝑠 (𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑒𝑑)

𝐹𝐿𝑂𝑃 (𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑)
 (5) 

 

Therefore, if this relation is observed for n = 4096, there has to be a constant k that allows to represent 

perfectly the percentage of performance drop due to data transmission as seen from our measurements for 

this specific architecture. Calculating it from the r(4096) ratio value, we obtained the result shown in eq. 6: 

 

𝑟(𝑛) = 𝑘 ∗  𝑑𝑜𝑟(𝑛) =
480

(𝑛 − 1)
 (6) 

  

Having the relation r as a function of n will allow us to obtain the data overhead ratio for any n positive 

integer without having to perform any additional tests. As can be seen in Fig.5, this inference matches 

perfectly with those measured in experiments and shown in Fig. 2.  

 



 
Fig.5: Inferred transmission overhead ratio. 

 

 It is important to note that the proportion k obtained is the particular value of the GPU device – and 

underlying architecture – we used. Therefore, for each other architecture used to execute our kernel, a new 

value for k should be provided that reflects the estimated performance drop. 

 On the other hand, since the dor(n) ratio will not vary between different architectures, it should be 

calculated only once per algorithm. Then, just combining it with the appropriate k proportion to obtain the 

r(n) of that specific algorithm-architecture scenario. 

 The most valuable aspect of having such pre-calculated proportions is that a table containing different 

k values for the available architectures, and dor(n) values for the available algorithms, we could predict the 

performance drop for data transmission for combinations of algorithms and architectures that were not 

tested in actual experiments. 

4.1   Interleaved transference per iteration ratios 

We have surmised through our tests that the performance overhead of transmitting the simulation’s 

intermediate results at each iteration for different values of n can be estimated. However, it could also be 

helpful to calculate the overhead if just a certain portion of intermediate results should be gathered. In such 

case, we would have data transmissions every m number of iterations. 

 As we could appreciate in the previous section, the dor(n) ratio for this algorithm was calculated for a 

1/1 proportion of transmissions per iteration. However, if we wanted to change that proportion to 1/2, 

(which means: transmitting every two iterations) its value would proportionately drop to a half. Thus, we 

can extend our definition of r to take into account the amount of iterations per transmission as in eq. 7: 

𝑟(𝑛, 𝑚) =
𝑘 ∗  𝑑𝑜𝑟(𝑛)

𝑚
=

480

(𝑛 − 1)𝑚
 (7) 

 

 In order to test the accuracy of the estimations made with the r(n,m) equation, we verified its 

estimations with a series of tests using variations for the values of n and m. We confirmed that every result 

approached the estimations with negligible deviations. Therefore, such equation could effectively 

determine the impact of data transmission in a wide variety of cases. In Fig.6, we show different curves as 

functions of n, using different values for m. 

 

 
Fig.6: Inferred transmission overhead ratio for different values of m. 

 

The extent at which scientists will be willing to sacrifice intermediate data to be discarded by this approach 

should be considered for each case. However, having estimations for all combinations of n and m we can 

provide valuable clues for establishing the best option in each case. 
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5   Conclusions and Further Work 

Balancing and fine-tuning the two factors that define the numerical precision of a simulation (total time 

interval and differential) can be a very complicated task. Since they define the amount of iterations being 

calculated, they will also define how much real time will be spent on the actual calculations. Certainly, for 

scientists only interested in a final result, estimating the negligible data transference overhead is of a little 

interest. However, for simulations that need to store intermediate data, time spent on device/host 

transference would become an important issue.  

Providing scientists with a way to estimate how much processing time will be added in data overhead – 

given the amount of iterations and the interleave transfers – could allow them to estimate the best option 

for their time/architecture availability without having to try all the possible combinations, which could 

demand more effort than the performing the simulation itself. 

In that sense, we have defined and tested a method to estimate the impact of data transmission vs. processing 

time in GPU-based simulations and N-Body algorithms. It could be evaluated for other types of GP-GPU 

algorithms since we were able to narrow it down to a bytes/Flop relationship. We estimate that it would 

only require to calculate a data overhead relation – a constant for the algorithm –, and a data transmission 

cost – a constant for the device, as a metric for size in Flops. However, more testing on a diversity of 

algorithms and architectures should be performed in order to verify whether this relationship could be 

extrapolated.  

The next step on this research will be focused in evaluating how other device performance counters could 

best allow us to estimate the costs of transmitting data, and how it could be optimized. Additionally, it will 

be necessary to determine how to estimate the transference overhead N-body algorithms ran in multiple 

device architectures or GPU clusters. Those cases hold much larger penalties for data transferences, and 

thus offer more challenges for data overhead estimation. 
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