Veuillez utiliser cette adresse pour citer ce document : http://repositoriocyt.unlam.edu.ar/handle/123456789/864
Affichage complet
Élément Dublin CoreValeurLangue
dc.rights.licenseLicencia Creative Commons Atribución-Sin Derivados 4.0 Internacional (CC BY-ND 4.0)spa
dc.contributorSpositto, Osvaldo Mariospa
dc.creatorBossero, Julio Césarspa
dc.date1996spa
dc.date.accessioned2021-12-16T17:30:54Z-
dc.date.available2021-12-16T17:30:54Z-
dc.identifierhttps://ror.org/01bmj8t37spa
dc.identifier.citationBossero, J. C. (1996). Estudio comparativo de técnicas de minería de datos para la predicción de la deserción universitaria [Tesis de maestría, Universidad Nacional de La Matanza]. Repositorio Digital UNLaM. http://repositoriocyt.unlam.edu.ar/handle/123456789/864spa
dc.identifier.urihttp://repositoriocyt.unlam.edu.ar/handle/123456789/864spa
dc.descriptionLa Minería de Datos Educacional (MDE o EDM1), es una rama de la Minería de Datos (MD o DM2), que se ha dedicado a aplicar diversas técnicas para analizar datos provenientes de ambientes relacionados a la educación formal, y a extraer la mayor cantidad de conocimiento, con el objeto de entender mejor a los estudiantes, profesores y actores involucrados, y así mejorar los procesos educativos En la actualidad, la tendencia en las universidades es trabajar con tecnologías MDE, que faciliten y mejoren el desarrollo de las actividades académicas, creándose de esta forma un aprendizaje electrónico añadido al tradicional. El uso de estos nuevos medios tiene grandes ventajas, una de ellas es que permite generar una gran cantidad de datos producidos por el estudiante durante el proceso de aprendizaje. La Minería de Datos, entre otras técnicas, utiliza Inteligencia Artificial para encontrar patrones y relaciones entre los datos, permitiendo la creación de modelos y representaciones abstractas de la realidad. En este trabajo se realiza una introducción a dos técnicas de MD, por un lado RedNeuronal Artificial (RNA o ANN6) del tipo Perceptron Multicapa (PM), y por otro una Máquina de Vectores Soporte (MVS o SVM7), para explorar su aplicabilidad en el terreno de la MDE como instrumento de modelización y predicción no paramétrica. Con tal objeto, se pretende desarrollar ambos modelos, y luego ser posteriormente aplicados en la predicción de perfiles de alumnos desertores, utilizando datos reales provenientes de un Almacén de Datos (AD o DW8). Los resultados obtenidos serán comparados para determinar cuál de ellos es más eficaz y eficiente en la predicción y poder ser utilizado, de ser necesario, por las autoridades para tomar acciones anticipadas que ayuden a disminuir el índice de deserción o desgranamiento universitario.spa
dc.descriptionFil: Bossero, Julio César. Universidad Nacional de La Matanza; Argentina.spa
dc.formatapplication/pdfspa
dc.format.extent131 p.spa
dc.languagespaspa
dc.publisherUniversidad Nacional de La Matanzaspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rightshttps://creativecommons.org/licenses/by-nd/4.0/spa
dc.subjectANALISIS DE DATOSspa
dc.subjectABANDONO DE ESTUDIOSspa
dc.subjectENSEÑANZA SUPERIORspa
dc.subjectMODELADO DE DATOSspa
dc.subject.ddc006.312spa
dc.subject.otherData miningspa
dc.titleEstudio comparativo de técnicas de minería de datos para la predicción de la deserción universitariaspa
dc.typeinfo:eu-repo/semantics/masterThesisspa
dc.typeinfo:ar-repo/semantics/tesis de maestríaspa
dc.typeinfo:eu-repo/semantics/acceptedVersionspa
Collection(s) :Maestría en Informática

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
MI-Bossero.pdf4.25 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.